Status of Efforts to Reduce In-Use NOx Emissions from On-Road Heavy-Duty Diesel Vehicles (Element M17 of the California SIP)

Board Update

California Environmental Protection Agency

Air Resources Board

Outline

- Heavy-duty diesel engine (HDDE) background
- SIP Measure M17, reduce in-use emissions from on-road HDD vehicles
 - HDDE NOx field screening program
 - HDDE in-use compliance program
 - Heavy-duty on-board diagnostic program
 - NOx reduction incentive programs

HDDE Background

- Importance of on-road HDDE
 - Superior fuel efficiency and durability
 - Vital to the transport of goods and material
- Drawbacks of diesel engines
 - NOx-precursor to ozone and secondary PM
 - PM-toxic air contaminant

HDDE Emission Standards New On-Road Engines

Emission Regulations: Cars vs. Trucks

- Stringent LEV standards
- Effective in-use compliance program
- Effective Smog
 Check
- OBD II since 1996

- Stringent Standards
- No in-use
 Compliance testing
- Smoke inspection only
- No OBD

Elements of SIP Measure M17

- Emission reductions from in-use HDDEs
- 10 TPD NOx, 1 TPD ROG in SCAB 2010
- Strategies to be considered
 - HDDE NOx field screening program
 - HDDE in-use compliance test program
 - Heavy-duty on-board diagnostic program
 - Pursue incentives

Development of Heavy-Duty Diesel Engine Field NOx Screening Program

Development of a Field NOx Screening Test

- How Would the Program Work?
- Portable dynamometers set up at roadside locations
- Enroute heavy-duty trucks would be detached from trailers
- Emissions testing for excess NOx conducted
- Repairs required for failing trucks

Critical Questions to Determine Value of Program

- 1. Are there excess NOx emissions in the vehicle population that are caused by tampering & malmaintenance?
- 2. Is there a practical field test that can identify those vehicles with high NOx emissions?
- 3. Can these excess NOx emissions be reduced through repairs and maintenance?
- 4. Can the reduction be made cost-effectively?

Stockton Laboratory

Truck ready for testing.

10Laboratory grade emissions analyzers.

ARB staff performing power curve test.

Clean lab ready for next truck.

Powercurve Test Cycle

Vehicles Testing Summary

- 67 vehicles tested
- Selection designed to characterize HDD Vehicle Fleet
- 1291 total tests conducted
- 21 vehicles sent for repair

Baseline NOx Test Results by Model Year

What Percentage of HDD Population can be Characterized as High NOx Emitters?

- 15 percent may have excess NOx
- Highest emitter group constitutes 5% of the population, >12 g/whp-hr.
- No clear line between high and normal emitters

Surveillance 15: LDT/MDV

Effect of Repairs on NOx Emissions (g/whp-hr)

Reflashes not included

Effects of Repairs (10g/whp-hr cutpoint)

- 3 trucks showed emissions decrease
- 2 trucks showed emissions increase
- 1 truck unchanged
- Average reduction / per truck repaired:
 - -2.1%
 - Approx. 3TPD reduction in South Coast
- Average Repair cost: \$1018

NOx Screening Program Status

- Current data indicates difficulty in developing a NOx screening test
 - Per vehicle emission reductions from repair are minimal
 - No clear cut point to screen out high emitters
- ARB will continue to investigate magnitude and causes of high NOx emissions from HDD vehicles

Heavy-Duty Diesel In-Use Compliance Program

Compliance Testing

- Objective: Identify designs that fail to control emissions; correct with recall
- Current Obstacles
 - Need to test engine as it was certified
 - Time consuming: requires removal of engine
 - Expensive: approximately \$300K-\$700K
 - Impact on vehicle owner/operator: require truck for lengthy period; difficult to provide loaner truck
- →Obstacles can be overcome based on the "Not-to-Exceed" (NTE) concept.

Not-to-Exceed Test is Unique

<u>FTP</u>

- Compliance based on the use of one pre-defined driving cycle
- Compliance based on averaging emission over the entire test
- Limited to engine dynamometer testing only

<u>NTE</u>

- Compliance based on a broad operating range
- Compliance based on multiple sampling periods as short as 30 seconds
- Applicable to engine and chassis dynamometer testing, and on-the-road on-board measurement testing

HDD In-Use Compliance Program

- Manufacturer-run in-use compliance program
 - Collaborative efforts between ARB, U.S. EPA, and EMA since March 2002
 - All major elements agreed upon
 - Compliance determined by Not-to-Exceed testing
- Manufacturer-run program benefits
 - ARB/U.S. EPA
 - Reduce expenses by sharing data
 - Verify compliance with in-use emissions data
 - Check for presence of defeat device
 - Manufacturers
 - Streamline certification process
 - Combined CA/federal program
 - Reduce Selective Enforcement Audit

Program Details

- Test 25% of engine families per year
- Test 1 EF/year for small manufacturer
- Test truck for a full shift in normal operation
- Two phase testing
 - Phase 1: Test up to 10 vehicles (6 + 4) per engine family
 - Phase 2: Required if 5 or more of the 10 vehicles fail, test up to 10 more vehicles
- Test data evaluation
 - May lead to a recall

Program Implementation

- California pilot program in 2005 and 2006
 - Phase 1 testing only
 - Analysis of test results by ARB/U.S. EPA/manufacturers
 - No enforcement action solely on pilot program data
 - Improve and refine the program as needed
- ARB can conduct its own in-use testing
- Fully enforceable program starts in 2007

Heavy-Duty On-Board Diagnostics Program

On-Board Diagnostics (OBD) Systems Background

- OBD systems monitor all emissionrelated components for malfunctions
- Alert driver by illuminating warning light
- Store diagnostic information for repair technicians
- Have been required on gas and diesel vehicles < 14,000 lbs. GVWR since 1996

Heavy-Duty OBD

- Require monitoring of:
 - Electronic emission-related components
 - Aftertreatment devices
 - Engine misfire
 - Fuel delivery system
 - Other emission controls

Heavy-Duty OBD (Continued)

- Applicability
 - 2007 and later model years
 - Gas and diesel HD vehicles and engines≥ 14000 lbs. GVWR
- U.S. EPA plans to harmonize by adopting ARB regulation
- Proposal to the Board in late 2003

Increased Incentives for NOx Reductions

- NOx reductions from incentive programs meet ARB's M4 commitments for the South Coast
- Additional NOx reduction will occur through ARB's continued funding of incentive programs
- Additional reductions in excess of ARB's M4 commitment for the South Coast will contribute towards ARB's M17 commitment for 2005 and beyond

In-Use Emission Reduction Programs Summary

Programs	Passenger Cars & Light Duty Trucks		With Proposed M17 Programs
Emission Standard			
Compliance Program			√
Smog Check	√	Smoke Only	Smoke + ?
OBD II	√		√

Next Steps

- Continue testing of HDD trucks to evaluate the NOx screening program
- Continue working with U.S. EPA, EMA, and individual manufacturers on finalizing in-use compliance and OBD programs
- Seek additional funding for incentive programs
- Conduct workshop(s)
- Proposal to the Board in late 2003